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The present article reviews two classes of semiclassical (mixed quantum mechanical/classical) methods for
investigating multielectronic-state dynamics: the trajectory surface-hopping (TSH) method and the time-
dependent self-consistent field (TDSCF) method. The recent availability of accurate quantum mechanical
dynamics calculations for a variety of realistic three-body two-state potential energy matrices has allowed an
assessment of the validity of semiclassical multisurface dynamics methods that are applicable to larger systems.
These studies indicate that Tully’s fewest switches algorithm is the best available TSH method and that the
Ehrenfest method is the best previously available TDSCF method. The fewest switches surface-hopping method
has relatively small errors even when it is not the best method while the Ehrenfest TDSCF method tends to
have larger errors when it is not the best. However, the fewest switches algorithm involves unphysical
discontinuities in momenta, and the results may depend on the choice of representation. Furthermore, the
surface-hopping algorithm is frequently frustrated in its attempt to maintain ensemble-average self-consistency.
The Ehrenfest method removes all these troublesome aspects but at the cost of producing unphysical mixed
states, which are responsible for its larger errors in observables. A recently introduced TDSCF method, the
continuous surface-switching method, removes the unphysical mixed states of the Ehrenfest method, and in
initial tests it produces results that are systematically better than those calculated by the Ehrenfest method.
The present article illustrates several of these aspects of nonadiabatic trajectory methods pictorially.

I. Introduction of freedom’8 It is still the case that for systems with more than

Semiclassical dynamical methods, that is, dynamical theories thrée atoms and more than one electronic state a converged
that combine classical mechanics and quantum mechbfics, duantum mechanical description is infeasible; in fact, only
provide an appealing way to gain insight into systems for which recently have accurate Qescnptlons of full three-dimensional
accurate quantum mechanical calculations are intractable or inthree-body two-electronic-state systems been presénted.
which a better understanding of experimental results is desired.Nevertheless, there is a strong interest in large photochemical
Purely classical dynamical methddgor quasiclassical meth- ~ Systems?~3! and there is a corresponding interest in the
0ds?6 which are classical trajectories with quantized initial development of accurate semiclassical methods that might be
conditions) are often applied to systems that are too large to @pplicable to such problems.
study quantum mechanically; however, in many cases multiple  Until recently, the lack of benchmark accurate quantal results
electronic states are involved, and some method beyond thehas prevented a validation of the various semiclassical methods
Born—Oppenheimer approximation must be employed for that have been proposed. In our view, systematic testing of
treating the inherently quantum mechanical electronic degreesexisting methods is the first step toward understanding their
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strengths and weaknesses and, we hope, toward developindions of the valence bond states, there will be appreciable
improved methods. This report summarizes our recent work on weights for more than one of them. As the system passes the
testing different kinds of semiclassical methods on a variety of crossing, the weights shift relatively rapidly, for example, from
electronically nonadiabatic chemical reaction types in gas-phase(1, 0) toward (0, 1). The nuclear momentum operator (which is
systems. We hope to understand which semiclassical methodsa derivative operator in nuclear coordinates) acting on these
can provide a useful description of the dynamics for various weights causes a large coupling, so the system may or may not
cases so that we or others can use this information to designstay in the same adiabatic electronic state. Under some condi-
improved methods that will be accurate for a wide range of tions it may be most probable that the valence bond character
systems. In this paper we review our recent work and try to does not change, corresponding to a nonadiabatic transition
determine which, if any, of the semiclassical methods we have between adiabatic states. In such a case it may be more physical
examined thus far is the best and for which systems each of theto use a valence-bond-like basis. A systematic way to do this
methods we consider is likely to be accurate. is to use aiabatic basis Whereas adiabatic states diagonalize

The work presented here should be of interest to a broad cros¢he electronic Hamiltonian but are coupled by nuclear momen-
section of chemists, and since these groups often use quiteluM, diabatic states have no nuclear momentum coupling but
different words to describe the same phenomena and similar@'® coupled by off-diagonal elementd) of the electronic

concepts, a few words on nomenclature and background shouldi@miltonian. Thus the coupling is a vector (calléd) in an
be helpful. All chemical processes may be divided into two adiabatic representation but a scalar in a diabatic one. We hasten

classes: those in which the electronic state does not changéo point.out t'hat although exact adiabatic §tates exist in principle,
and those in which it does. For nonreactive collisions these may Xact diabatic states do not eff{because in general one cannot

be calledelectronically elasticand electronically inelastic ~ make all components afi, vanish simultaneously). In practice
respectively. A very similar but somewhat less precise distinc- W€ Per force use approximate adiabatic states (because of
tion is implied by the common termthermal reaction&-3L computational I|m|tat|ons), anql we also use approximate diabatic
for reactions initiating in the ground electronic stapioto- states (because exact diabatic states do not exist). We note that

chemical reactior@31 for those initiating in an electronically ~ the adiabatic potential surfaces are cagdandVz, and they

excited state, and, less frequently encounterkemiluminescent are the eigenvalues of the diabatic potential surface matrix
reactionsfor those producing an electronically excited species. U.. U
At a more detailed level of understanding, one categorizes a ( H 12)
process not just on the basis of initial and final states, but on U, Uy
the evolution of these states throughout the dynamical event. i ) . i i
The diagonals of this matrix are called diabatic surfaces or

The most unambiguous set of states for expanding an electronic’ .
wave function is the set cddiabatic or Born—Oppenheimer diabats The precise methods that can be used to create an

. . . . . . i i i i i VB3s-48
electronic states that diagonalize the electronic Hamiltonian approxmate c!|abat|c basis are discussed .else ﬁff and
when the nuclear positions are fix&d34 Finite nuclear veloc- will not be reviewed here. Instead we are interested in how well
ities cause nonadiabatic transitions between these a5 the questions of whether more accurate results can be obtained
Depending upon whether such a transition has or hés not PY solving the semiclassical problem of coupled nuclear motion

occurred, we classify processes (energy-transfer collisions andag.OI te):le;:tromc statet etyolut|or(lj|n ?thla.b att'ﬁ ret[;') re?entat!oln or'anl
chemical reactions) adectronically adiabatior electronically adiabatic representation and what IS the best semiclassica

nonadiabatic In semiclassical language, we envision the method _for calculatmg suc_:h results. . .
transition as corresponding tesaitchfrom nuclear motion on Crossings of the adiabatic states are less frequent than diabatic

one adiabatic potenial energy surface to nuclear motion on (iSRG, HICte 18 220 By SYREB, T8 SEEEEE S0
another. In some semiclassical theories, such switches involve ’

. - - when n nonzero, di n cr in f
discontinuous changes in nuclear momenta, and they are alsobUt enUs, can be nonzero, diabats can cross in a space o

called hops In general the potentidurfacesare the sum of dimensiorF — 1 (whereF 1S the.number of mterngl degrees of
. . . . freedom, equal to 3 for triatomics), whereas adiabats can cross
electronic energy and nuclear repulsion for a given electronic . . . - . i
- in a space of dimensioR — 2. Such adiabatic crossings are
state and nuclear geometry. Technically these are energy S 28314950
. " p called conical intersectiong®31.4°.
hypersurfaces, but we usually just say “surfaces.” The surfaces

corresponding to the adiabatic electronic states are called||. Review of Methods

adiabatic surfaces adiabats The semiclassical methods considered here are all trajectory-
The electronically adiabatic states are not the only possible based methods including the full dimensionality of the system.
basis for expanding the electronic wave function. In an accurate We consider two different classes of methods: the trajectory
solution of the Schidinger equation, the use of any basis leads surface-hopping (TSH) approddi5t54and the self-consistent
to the same results for physical observables, but this is not truepotential (SCP) approadf>5-%1 Both of these approaches may
for approximate methods. Furthermore, some bases may be morée thought of as versions of the time-dependent-self-consistent
efficient computationally or lead to more insight. For example, field (TDSCF) method. For example, the TSH method may be
one is often intereseted in transitions between covalent (A:BC) derived by requiring that in the limit of degenerate potential
and ionic (A"BC™) states, where we have usedlence bond surfaces the number of trajectories that are propagating on a
language to label the states. The ionic state may be the secondjiven potential surface at any given time is proportional to the
adiabatic state for A far from BC, but it may be the first (lowest- average of the diagonal electronic density matrix element
energy) adiabatic state for tight geometries or for produ¢8 A corresponding to that surface. The self-consistency of the surface
+ C). Thus the valence bond labeling is not in one-to-one governing nuclear motion with the electronic density matrix is
correspondence with the adiabatic labeling, and there must bethus obtained for the entire ensemble, in that limit. The SCP
surface crossing§places where two surfaces are equal) of the method may also be employed with an average over an ensemble
valence bond states along the reaction path. Near the surfacef trajectorie$® 61 but most work has involved more practical
crossings, if the adiabatic states are written as linear combina-version®°5-58 in which the potential energy governing the
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motion of a single trajectory is consistent with the electronic Instead of working with the coefficients, andc,, it is often
density matrix elements calculated along that trajectory. That convenient to use the electronic density matrix
is, self-consistency is obtained for each trajectory individually

and independent of the other trajectories. In this section we P11 P12 le,” cc,

review one example of each type of method for the case of two =
electronic states. In particular, we review the Tully’s fewest

switches (TFS¥ version of TSH, and we review the Ehrenfest . i
versiort55 of SCP. In other work we testéft23 another where the diagonal elements are the populations of the states

surface-hopping method, the Blaigruhlar method® and we and the oﬁ-diggonal elements are the electronic coherenceg. It
tested®?® an alternate SCP method, the classical electron €0 Pe seen in egs 2 and 3 that the choice of the classical
method® of Meyer and Miller. Both methods have serious trajectory determines the evolution of the_ quantum wave
shortcomings. Although the BlaisTruhlar method predicts function. _In both the trajectory surface-hopplr_lg methods an_d
reasonable probabilities of producing nonadiabatic products for seli-consistent potential method; the electronlq density matrix
systems with strong electronic coupling, it typically predicts elements' are uged tq self-consistently determine the paths of
zero chance of forming these products for systems with weak the classical trajectories, although each method accomplishes

electronic coupling® The classical electron method, because thiS in a different fashion.

of a Langer-typ& modification, often populates closed elec- “-r'f‘-dT';S '\r?ethgd-f'rhe TFS n;eth?‘d isrfthe Surfa(r:]e-hopping
tronic states and tends to predict final rotational and vibrational Method that has the fewest number of surface switches necessary

moments that are too largd2’ Since Tully argued that surface to obtain ensemble-averaged consistency between the quantum

hopping is not compatible with a diabatic representatiand ~ and the classical der?rees of freedom in the limitHi(R) = i
since the Ehrenfest method is independent of representation,sz(.R.)' (Of course, t ggurfaces are never degengrate &, a
and since the fewest switches and Ehrenfest algorithm performPUt it is only in this limiting case that surface hopping can ever
better than the BlaisTruhlar and classical electron algorithms, be self-consistent, So the !|m|t|ng case Is used to derl\_/e the
we take the TFS surface-hopping method in the adiabatic method.) Self-consistency is accomplished by propagating an

representation and the Ehrenfest self-consistent potential methoc?”semble O.f trajectories on th? d.|agonal potential matrix
to be the standard representatives of their classes. elements, with each trajectory being independent of the others.

In this section we also review improvements in each of the The probability that_atraje(_:tory that is propagating on potential
two representative semiclassical methods. For the TFS methodSUrfaceti(R) at a timety will hop to surfaceH;(R) at timet,

()

* 2
P21 P22 CC, Gy

the improvement is a criterion for selecting between adiabatic 'S 9V€n by

and diabatic representations to find the one that leads to the () — pi(t,)

more accurate results. For the Ehrenfest method, the improve- P. =ma M' (8)
ment is a method to include decoherence so that trajectories 'ﬂ pii(t)

finish in a pure state when they leave the region where the states
are coupled; the improved Ehrenfest method is called continuous  The results of TSH methods depend on the choice of the
surface switching. vector used to adjust the nuclear momentum during surface hops.
In all of the semiclassical trajectory methods that we consider, We have tested two difference choices for the hopping vector:
a distinction is made between quantum variabigand classical the gradient of the difference of the adiabatic potential energies
variablesR. The classical variables are assumed to be describedand the nonadiabatic coupling vector. We have typically found
by classical trajectorie®(t), and the quantum variables are that the results are not too sensitive to this chtlioehen hops
described by the time-dependent Salinger equation. For the  occur in regions of strong nonadiabatic coupling, as both vectors
case of two electronic states, the electronic wave function is point in nearly the same direction in these regions. In regions
given by of weaker nonadiabatic coupling, when the two vectors do point
in somewhat different directions, the nonadiabatic coupling
D(R(1); 1) = cy(t) ¢4(r; R(D)) + (1) o(r; R(Y) (1) vector was found to give better resuifsFurthermore, the
nonadiabatic coupling vector is the choice suggested by
whereg; is a basis function, the coefficients evolve according semiclassical analogié$?2 and therefore this is the choice we

to* make for the present work.

) (0 In practice, the self-consistency of the TFS method may be

_ 1 5. T\ violated. One reason for this is that hops from the lower surface

& CZ(t)[hle(R) +Rd(R) 75(t) 2) to the upper surface may be energetically forbidden. More
generally, there may be insufficient momentum along the vector

i . 75(t) that is used to adjust the momentum to allow a hop to occur.
St = _Cl(t)[EH21(R) + Red,y(R) ) ) Either of these happenstances is called a frustrated hop. The

1

procedures we have used in these cases are, in the first case, to
continue propagating on the initial surface with no momentum
discontinuity and, in the more general case, to reverse the
i component of the momentum that lies along the hopping vector.
i = exp(—ﬁ ftHii(R) dt) (4) (This follows from a modél®in which a single potential surface
corresponds to one or the otherkdf; andHz, on the two sides
Hi(R) = [y (r; R)[Hg(r; R)Igy(r; R)U (5) of a hopping seam). An alternate procedure advocated in the
literatureé® is to treat both cases the first way. Although we have
di(R) = [@(r; R)[Vgey(r; R)O (6) not tested this alternate procedure for strongly coupled systems,
we have found that for very weakly coupled systems the errors
andHg is the electronic Hamiltonian. In a diabatic basig,= are slightly smaller for this alternate procedure than for the first
Uj andd; = 0. In an adiabatic basisl; = V; andH; = 0. procedure discusséfland this remains an area of investigation.

where
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Another suggestion to remedy the problem of frustrated surface perform TFS calculations in have been reviewed elsevifere
hops in the adiabatic representation is to replace the velocity inand will not be mentioned here. We have found that the hop-
egs 2 and 3 with an average velocity that points in the direction attempt minimizing criterion that defines the Calaveras County
of the velocity on the surface the trajectory is currently being representation is better than the others we have examined.
propagated on and has the magnitude of the geometric mean of It is also possible that there is some representation that is
the velocities the trajectory would have if propagated on either neither adiabatic nor diabatic in which TFS calculations agree
potential surfacé’ Energetically prohibited hops will not occur  even better with quantum results than either the adiabatic or
in this prescription, since when the kinetic energy on the upper the diabatic representation. This has been examined in more
surface becomes zero the coefficientft) and c,(t) will be detail elsewhef@and is a worthwhile subject for further study.
constant and no hops will occur. However, we have found that [I.C. Ehrenfest Method. In the Ehrenfest method the
this procedure systematically increases the total nonadiabaticpotential energy is given by the expectation value of the
probability® This is probably because such a treatment increaseselectronic Hamiltonian
the rate at whiclt,(t) changes with time (by mixing in ground-
state kinetic energy) and decreases the rate at whbi(th He(R) = [@(r; R)|H(r; R())|®(r; R)U 9)
changes with time (by mixing in excited-state kinetic energy
character). Furthermore, such a treatment is not applicable towhere® is the electronic wave function of eq 1. The Ehrenfest
trajectory propagation in the diabatic representation because inmethod is independent of the choice of representation of the
that case the coupling is not an explicit function of velocity. electronic basis functiorf$,and it avoids several other undesir-
Alternate forms for the hopping vector were introduced in able feature of the TSH methods as well. Since surface hops
an earlier work® in an attempt to improve the poor self- do not occur, use of the Ehrenfest method avoids having to
consistency of the TFS method resulting from momentum- determine along which direction the momentum should be
prohibited surface hops. These vectors were obtained by rotating2djusted during a surface hop. The Ehrenfest method also always
the hopping vector toward the momentum vector by the smallest Maintains its self-consistency since there are no frustrated hops.
amount necessary to allow a hop to occur. However, these The biggest drawback of this method is that trajectories
rotated vectors were found to give poorer internal energy Propagating according to eq 9 may finish on a mixed state that

distributions than the nonrotated hopping vectors and so will IS Not an eigenvalue of the asymptotic electronic Hamiltonian.
not be considered further here. This is as much a practical difficulty as it is a formal one;

I1.B. Choice of Representation for the TES Method. The trajectories that leave the interaction region on a mixed potential

results of the TSH calculations depend on the representaﬂonsurface will not have the. correct mterna] energy distributions.
. . . . - . : .~ Furthermore, if for a particular asymptotic arrangement one of
(adiabatic or diabatic) of the electronic basis functions. This is - . : . .
) . . . the diagonal potential matrix elements of eq 5 is very energeti-
a drawback of the method; the ideal semiclassical method should - . . .
- . A i cally inaccessible, then the potential energy defined by eq 9
share with accurate quantum mechanics the invariance of the

- . i . will almost always be energetically inaccessible, and the
results to the choice of basis functions. However, since the ) o A
; ) ; Ehrenfest method may predict zero probability of ending in that
results do depend on the choice of basis functions, we want to

use the basis functions that yield the most accurate results. Wearrangement even though there is a dynamically accessible

; . : . surface.
have shown in earlier wofRthat there is a correlation between

the reoresentation in which the TSH calculations are most I1.D. An Improved Self-Consistent Potential Method: The
P lon in-whi : dlations .. CSS Method. Recently, we presented a new self-consistent
accurate and the number of times that trajectories switch

surfaces. We anticipate, however, that although a small numberpotential method called the continuous surface-switching (CSS)

of successful hops may occur in one representation, the seh‘-me'[hod in which the mixed state 'S resolved into one or the
consistency of the TFS method in that representatio,n may be-Other pure 8|eCt-r0mC state as th-e trajectory Iea_wes the region of

; . interstate coupling’ This resolution is accomplished in such a
poor if a large ”“T“ber of frustrate_d h°p$ oceur. In this work way that the probability of finishing on a given surface, when
therefore we modify our strategy; in particular we now select

th tation in which the f ¢ ber of surf h averaged over an ensemble of trajectories, is consistent with
€ representation in wnich the Tewest number of surlace-nop ., average electronic density matrix elements. Thus the method
attempts occur. Note that for the two cases we studied pre-

iousiy?® both th . ‘ h teri d th is still self-consistent, but in an ensemble-average sense rather
vious 0 ¢ ehmlnlggum tsur_tac_e- op Igrl[r?”on an h '€ than trajectory by trajectory. We may also think of CSS as a
minimum surface-hop-attempt criterion yieid e same choice type of surface-hopping method in which the surface hops are
of representation, although in general this will not be the case.

. o replaced by switches that occur continuously in time.
We label the representation that our new criterion selects the Substituting eq 1 into eq 9 gives
Calaveras County representation after the location where strate-
gies were devised to keep a well-known frog from attempting _ V.
a hop% and we present TFS results for this representation in He(R) ZJZWJ(PIJ) HIJ(R) (10)
addition to the adiabatic and diabatic representations. For the

sake of brevity this representation may also be referred to asyherew;(p;) = p;j. The essence of the CSS methods is to allow
the least hopping attempts (LHA) representation. Note that for the weightsw; to be more general functions pf. In particular,
an ensemble of trajectories beginning in a single initial state ye |eave the off-diagonal weightg; unchanged, but we define
the Calaveras County representation will give the same resultsthe diagonal weightsv; so that they approach the density
as either the adiabatic or the diabatic representation. However,elementsp; in regions of strong coupling but go to either 0 or
for results that are averages over several initial states, the I’esultq_ in asymptotic regions_ The precise form of the function used
of using the Calaveras County representation will not be to determine the weights is somewhat arbitrary and remains a
equivalent to either the adiabatic or diabatic representations astopic of research. We note, however, that the TFS method, while
the Calaveras County representation may change for differentquite successful, also involves a degree of arbitrariness in the
initial states. selection of the fewest switches criterion. One reason to prefer
Other criteria for selecting the proper representation to this criterion is simplicity? and we used a similar guide in the
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selection of our functions faw;1 andws, in our initial tests of
the CSS method’
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semiclassical calculations. All of the systems we discuss are
three-body systems performed without any dimensionality-

In general, CSS calculations could be carried out in either reducing assumptions (such as collinear collisions or spherical
an adiabatic or a diabatic representation, although so far weinteraction potentials); however, we consistently omit electronic
have only tested the latter. However, in regions of strong angular momentum and electronic Coriolis coupling, and we
interstate coupling the method becomes equivalent to the consider only zero total angular momentum. All of the systems
Ehrenfest method, which is independent of representation, andhave realistic two-state potential energy matrices defined in the
in regions of weak interstate coupling the diabatic and adiabatic diabatic representation (the adiabatic potential surfaces are
representations are very similar. Therefore the CSS method habtained when necessary by diagonalization). The symbols used
been designed in such a way that it will be less sensitive to the in our tables and in our discussion are defined by the following
choice of electronic representation than the TSH method. equations

II.E. Final-State Assignment. A general problem in all

trajectory calculations is that the classical values of the A* +BC(v,j) —A+BC(",j") Q)
vibrational and rotational quantum numbers are not automati- C

cally integers. As discussed above, a similar problem occurs in —AB(¢,]) +C (R)
the Ehrenfest method for the electronic quantum number, but .

for the TSH and CSS methods, the final electronic quantum

number is assigned on the basis of the surface in which the ABC* — A +BC(",j") (D)

trajectory finishes.

For all calculations used to compute mean unsigned errorswhere an asterisk denotes electronic excitation. The quantities
in this paper, the final vibrational and rotational quantum v andj are the final rotational and vibrational quantum numbers,
numbersy andj were assigned by the linear smooth sampling Wwith primes distinguishing nuclear arrangements. The probability
(LSSY$:2276-72 glgorithm. In this algorithm, each trajectory Of process Q is called the quenching probabilfy, and the
contributes to the four discrete j states that bracket the final ~ probability of process R is called the reaction probabilRy,
continuous numbers resulting from the trajectory calculation. Although the unimolecular decomposition process labeled by
The weight of each of these discrateor j values is a linear D may be thought of as a photodissociation reaction, we have
function of the closeness of the continuous variable to the in other work*2¢referred to this as a quenching process since
discrete values. For TSH and CSS trajectories, each trajectorythe species ABC* is excited and the products are not, and we
contributes to four final states (two vibrational quantum numbers continue to use this description in the present review.

x two rotational quantum numbers), while for the Ehrenfest =~ The NaH system was studied at energies where the NaH
method each trajectory contributes to eight final states (two H arrangement was inaccessible. This is a large gap system;
vibrational x two rotational x two electronic). Two other  the Na excitation energy is 2.1 eV. We studied two parametri-
methods for assigning the final-state variables that we have zations of this system (5P and @"); differences have been
previously tested are the histogramnfidgalgorithm and the discussed elsewheféNaH, has a line of conical intersections
quadratic smooth sampling (QSS) algorith#i3 In the histo- at Cy, geometries, and it is accessible in both parametrizations;
gramming method each of a trajectory’s final continuous however, it is more readily accessible for the 5F case than in
quantum numbers is simply rounded to the nearest discretecase 6.

quantum number. The QSS method is similar to the LSS method We studied two different parametrizations of the MHH
except that the weight is a quadratic function of the closenesssystem, where M is a model metal with an excitation energy of
of the continuous variable to the nearest discrete quantum state0.76 eV. In this system the product M#H H arrangement is

Since every Ehrenfest trajectory finishes in an electronic state energetically accessible. The two different parametrizations are
that is a mixture of the two pure states, it seems natural that in otherwise similar to the Nafisystem; they differ from each
the assignment of the electronic variable every trajectory should other in that one of them (parametrizatio'tthe M* + Hy, —
contribute to final dynamical quantities associated with both MH + H reaction is exothermic, while in the other (parametri-
electronic states. The LSS and QSS algorithms accomplish this;zation 2§ it is endothermic.
the histogramming algorithm does not. With no particular reason ~ We also studied reactions in the MXH system, where M is a
to prefer one of the smooth sampling methods to the other, we model metal and X is a model halogen atom. These systems do
select LSS for its simplicity. We have typically found, however, not have conical intersections, but they do have avoided
that all three of these procedures result in similar predictions crossings (i.e., the diabats do cross, but the diabatic crossing
for the final dynamical quantities (although one exception to seam does not intersect a region whefig = 0). We studied
this is described in a later section). For consistency, we chosethree parametrizations of this systéfthey differ in the strength
to use LSS for all of our trajectory methods and all three and broadness of tHe;» coupling surface and are labeled WL,
(vibrational, rotational, and electronic) sets of quantum numbers. SL, and SB. The first letter represents the strength of the diabatic

In some cases, especially for the Ehrenfest method, thiscoupling elementJ;, (strong or weak) and the second letter
procedure results in trajectories being assigned to states whoséepresents the spatial extent of the diabatic coupling (localized
energies exceed the total energy of calculation. We have or broad).
explored the possibility of reassigning these trajectories to lower- ~ The last system we examined is the Brsystem'®7* This
energy states but have found that this generally decreases théystem has a small excitation energy (0.5 eV), and in this system
overall accuracy of the calculatiddand so we do not use this  neither the adiabats nor the diabats cross.
reassignment procedure in the present review. The differences in the systems that we studied are pictured
in Figure 1. Panels a, c, and e illustrate the diabatic matrix
elements, while panels b, d, and f illustrate the adiabatic curves.
Panels a and b show MHH parametrization 1, in which both

In this section we review the systems for which we have diabats and adiabats cross. Panels ¢ and d show MXH
performed both quantum mechanical dynamics calculations andparametrization SL, in which diabats cross but adiabats avoid

Ill. Examples
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TABLE 1: Mean Unsigned Errors®

Pr Po @0 JO @'0 §'o
NaH? (Two Parametrizations)
TFS—adiabatic - 0.23 - — 027 10
TFS—diabatic - 0.12 - = 027 12
TFS—Calaveras Co. — 0.23 - — 018 1.0
Ehrenfest - 0.48 - - 052 21
MHHP (Two Parametrizations)
R TFS—adiabatic 0.12 0.10 0.05 1.2 0.14 1.0
3 TFS—diabatic 0.13 0.07 0.04 1.10.11 0.9
g TFS—Calaveras Co.0.10 0.08 0.04 1.2 0.09 0.8
5 Ehrenfest 0.24 0.20 0.08 1.3 0.16 1.8
j
@ BrH* (One Parametrization)
TFS—adiabatic 6.% 10* 35x10° 0.14 2.4 0.38 0.8
Ehrenfest 6.1x 104 3.7x10% 0.00 6.7 0.85 1.0
MXH¢ (Three Parametrizations)
TFS—adiabatic 0.25 0.08 0.07 1.0 0.08 0.6
TFS—diabatic 0.21 0.11 0.07 0.8 0.14 0.7
TFS—Calaveras Co. 0.26 0.07 0.08 0.9 0.08 0.6
Ehrenfest 0.20 0.12 0.16 1.6 0.21 1.0
CsSs 0.09 0.11 0.10 0.9 0.220.6
aFrom refs 9, 42, 47° From refs 21, 22¢ From refs 16, 749 From
ref 27.¢Bold numbers indicate the best method for the dynamical

00 L
A(")+BC AB+C A()+BC AB+C quantity. Column headers are defined in section Ill.
reaction coordinate

Figure 1. Schematics of several potential energy surfaces for A or 10 F
A* + BC — AB + C. (a) Diabatic matrix elements for MHH L
parametrization 1. (b) Adiabatic matrix elements for MHH parametriza- N [
tion 1. (c) Diabatic matrix elements for MXH parametrization SL. (d) 205
Adiabatic matrix elements for MXH parametrization SL. (e) Diabatic r
matrix elements for the Brisystem. (f) Adiabatic matrix elements 0o L
for the BrH, system.
5180

crossing, i.e., there is no conical intersection. Panel d shows S 9 F
how the adiabatic curves are not as smooth as the diabatic ones. 2 oL
This, plus the economy of the coupling being a scalar rather
than a vector, is one of the motivations for modeling systems £25
diabatically. Panels e and f illustrate the Bréystem, in which S20f
neither the adiabats nor the diabats cross. TheJ\rametri- Zisk
zations are similar to panels a and b except that the product
arrangement opens at 2.8 eV while the excitation energy of Na 10 F
is2.1eV. s [

For all of the systems described above except for parametri- % [
zation 6 of the Naklsystem we performed bimolecular collision 205
calculations, and for the two parametrizations of the blaH & ’
system we also performed unimolecular decay calculations. 00 L . Lo . . 1d

This collection of eight systems and reactions, while not 3 4 5
exhaustive in the number of different possible types of nona- R (bohr)
diabatic processes, does constitute a test set with a variety ofFigure 2. Ehrenfest trajectory undergoing a quenching process as a
different surface types for comparing approximate semiclassical function of the distanc&®u-x between M and the center of mass of

methods to accurate quantum mechanical calculations. HX. This trajectory was calculated at 1.1 eV from the= 0,j = 0
initial state on parametrization SL of the MXH system. fa). (b)

. . The Jacobi anglg, which is the angle between the-NHX vector and
IV. Discussion of Results the HX vector.g(g) The HX bond Ignglrmx. (d) The potential energy.

For all eight cases, we calculated errors in the quenching
probability, the reaction probability (where applicable), and the  IV.A. What Goes Wrong? The most serious drawback of
final vibrational and rotational quantum numbers of the final the Ehrenfest is that the potential energy defined by eq 9 does
diatomic fragments. The errors in the probabilities and final not become equal to one of the pure potential energy surfaces
vibrational and rotational quantum numbers were calculated by when the trajectory leaves the region of interaction. This is
comparing to the results of converged quantum dynamics calcu-illustrated more clearly in Figure 2, which describes an Ehrenfest
lations. For some of the systems (see original papérs426.2) trajectory undergoing a quenching process. Note that all of the
we considered several system energies and/or initial states, angblotted quantities are smooth functionsRaf-nx. However, the
in such cases the mean absolute errors are averaged over atrajectory ends in a mixed state with, = 0.42; in panel d it
energies and initial states. For NaHMHH, and MXH, the can be seen that the minimum potential energy along the exit
results are further averaged over the two or three parametriza-path is 0.32 eV, instead of 0 or 0.76 eV as it would be if the
tions of that type. The mean unsigned errors (i.e., mean absolutetrajectory finished in a pure ground or excited state, respectively.
deviations from accurate quantal results) are summarized in A consequence of the unquantized electronic energy is that the
Table 1. final vibrationat-rotational energy distribution does not re-
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2.0 TABLE 2: Average Mean Signed Errors in the Reaction
[ Probabilities for the Ehrenfest, CSS, and TFS Calculations
15 [ in All Three Representations
r TFS
L 10 Calaveras
v C system Ehrenfest CSS diabatic adiabatic Co.
0 F MHH 1 —-0.20 - 0.08 —0.10 0.02
S MHH 2 —0.28 — —0.06 —0.08 —0.08
[ MXH WL —0.20 —0.09 0.21 0.23 0.21
00 L MXH SL —-0.17 0.03 0.26 0.32 0.32
MXH SB —0.22 —-0.02 0.13 0.20 0.20
0 BrH, —62x10* - -  56x10%
8 f Average Over:
A MXH systems —0.20 —0.03 0.20 0.25 0.24
6 F all systems  —0.15 -0.03 012 011 0.13
A L
.‘v :
4r 10 F
2r R
205 |
ol i
2.0 2.1 22 2.3 0.0
energy (eV) a180 r
Figure 3. Final average final quantum numbers of, br the S 90k
unimolecular decay of NaHn parametrization 6 as functions of total = 0 L
energy of the system. The asterisks represent the accurate quantum
mechanical results, the filled circles represent the Ehrenfest results with =25
final states assigned using the LSS method, and the open circles 5
represent the Ehrenfest results with final states assigned by histogram- =20¢
ming. (a) Final vibrational quantum number. (b) Final rotational I 5 E
guantum number.
. . . 1.0 E
semble that for either possible electronic state of-NHX. As <
a corollary, the Ehrenfest method is more sensitive than other i‘i
methods to the scheme used to assign final quantum states. For 205 E
example, for Nakl with the LSS algorithm, the results could g
have contributions from trajectories whose energies are adjusted 00

by over 2 eV. 3 . 5 5
An illustration of the final-state assignment problem for the Ruxn (bohr)

Ehrenfest method is shown in Figure 3a, where we have plottedFigure 4. TFS trajectory in the Calaveras Co. representation (which,

the final average vibrational quantum number for the diatomic in this case, is the adiabatic one) undergoing a quenching process. The

fragments resulting from the unimolecular decay of an initially initial conditions of_the t_rajgctory are the same as for Figure 2. In these

excited NaH exciplex in parametrization 6. Notice that the panels, an open circle indicates the location of a surface hop, and an

Its of using hi ; ; h d ibrati | open diamond indicates the location of a hop attempt that was frustrated
results of using histogramming to assign the product vibrationa owing to insufficient momentum along thtevector. In each panel the

quantum numbers and using LSS to do the assigning are verygashed line represents propagation in the excited state and the solid
different. line represents propagation on the ground stateoafb) The Jacobi
Figure 3b illustrates another problem with the Ehrenfest angley. (c) The HX bond lengthr(x). (d) The potential energy.
method, which is that the final internal energies associated with when reaction is a small-probability event and the Ehrenfest
small-probability pathways will have large errors. This is potential has a large contribution from an energetically closed
because the Ehrenfest potential energy surface will mainly excited surface. This is illustrated in Table 2 for the cases
resemble the pure-state surface of the large-probability pathway.involving a chemical reaction. Notice that in every case the
In parametrization 6 of the Natbystem the large-probability  reaction probability is below the accurate quantum estimation.
pathway is the excited-state surface, which is characterized byThe TFS methods by contrast predict a reaction probability that
an attractive exciplex, and the small-probability pathway is the is too high on average, although there is not as systematic a
ground-state surface, which is repulsive. Predictions of the trend for the TFS methods as there is for the Ehrenfest method.
Ehrenfest method for the internal energy distribution for the ~ The TFS method also has undesirable characteristics. Figure
ground-state products in this system have a large error because illustrates a trajectory calculated with the TFS method in the
trajectories leave the interaction region under the influence of Calaveras Co. representation for parametrization SL of the MXH
the wrong physical forces. Table 1 illustrates this point further; system. Note the location of the surface hop and the subsequent
the Ehrenfest method typically has an error in the final change in the motion of the trajectory, illustrated in panels ¢
vibrational and rotational quantum numbers that is twice that and d. One of the assumptions in the derivation of the fewest
of the TFS methods. switches trajectory surface-hopping algorithm is that trajectories
Another related error is that the mixed character of the should follow paths that are independent of the surface being
potential energy often results in systematically low estimations used to propagate them; the change in character at the location
of the reaction probability for arrangements in which the excited- of the open circle clearly illustrates that this requirement is not
state potential surface is energetically inaccessible. This occursbeing satisfied in this case. The diamond illustrates a hop attempt
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Figure 6. Lifetime of the NahH exciplex calculated on NaH
parametrization 6. The open triangles represent the TFS results in the
adiabatic representation, the open squares represent the TFS results in
the diabatic representation, and the stars represent the quantum
mechanical results.

hop back to the upper surface. This results in a prediction of
680 685 690 nfsf("fs) 700 705 710 shorter lifetimes than calculations in the adiabatic representation
redict.
Fi%‘.‘rﬁ 5. Fiﬁ.a"tive TFS ttrr‘;"jecg?rybi"t.the Ca"’?"erf‘hs C.O:t.r elpresfj'.‘tt_a“o” P eTcrllgtworst-case examples for both TFS and the Ehrenfest
which, in this case, is the adiabatic one) for the initial conditions -
Elescribed in Figure 2. (a) The three bond Ie)ngths as a function of time. ”!e.thOd come from our calculations on the Natistem. In the
(b) The thin line represents,, and the thick line represents the weight  trvial case of degenerate states, both the Ehrenfest method and
W of the excited-state surface. The thick vertical lines represent surface the TFS methods give identical vibratiorabtational distribu-
hops. (c) The potential energy of the ground- and excited-state adiabatictions and reaction probabilities and all of the error in the
potential energy surfaces. The vertical dashed line represents thecalculation results from the classical treatment of the particles.
location of an energetically frustrated surface-hop attempt. It is thus large-gap systems in which the treatment of nonadia-
batic effects becomes most important. Nasithe largest gap
d vector. Panel a illustrates the sharp change in the evolution gap for surface-hopping trajectories for parametrization 6 is often
of p22 resulting from reversing the momentum component that |arger than 1 e\ Thus the failures of each method are clearly
lies alongd. The effect of this momentum reversal can also be jjjystrated by this system. Organic photochemistry often involves
seen by the Sharp Change in the HX Vibrational mOtion in pane| even |arger gapS, e_g.l the—» 7-[* exc|tat|on energy Of acetone
¢ and in the potential energy in panel d. Although we have never is 4 5 eV, and it is important to have accurate methods for the
seen evidence of a systematic difference in final average |arge-gap regime.
dynamical quantities between reversing the momentum com- |y . What Goes Right? Figure 7 illustrates a CSS trajectory
ponent alongd in the case of a momentum-prohibited hop or ndergoing a quenching process. Panel a illustrates the values
not carrying out such a reversal, the sharp change in the g p22 and Wy, as functions of the MHX center-of-mass
evolution of p, resulting from this procedure suggests that gistance. Note thatvs, closely trackspz, until the Ry_x
allowing the momentum to remain unchanged may be a more gistance reaches 4.0 bohr, at which poips gradually goes to
physical alternative, although it does not follow from the model ,or0. This is further illustrated in panel d, where now the
mentioned in section Il.A. discretization ofw,; allows the minimum energy in the vibration
Figure 5 illustrates a reactive TFS trajectory in the Calaveras of HX to go to zero.
Co. representation as a function of time. Panel a illustrates the  Table 1 shows that the CSS method has average errors in
evolution of the bond lengths with time. The interaction period the six dynamical quantities that are smaller than the Ehrenfest
occurs between about 600 and 850 fs and is shown in moremethod for the MXH systems. Table 2 shows that the CSS
detail in panel b. It can be seen in panel b that three successfulmethod corrects the tendency of the Ehrenfest method to give
surface hops occur. In each case there is a corresponding changaction probabilities that are too low. Thus it appears that
in p22. Figure 5 also illustrates the stochastic nature of surface- forcing SCP trajectories to end in a quantized electronic state
hopping, namely, that not every large changepip causes a  improves the observed dynamics.
hop to occur. Panel b illustrates an energetically frustrated hop | may appear from Table 1 as though the TFS results in the
at 692 fs. At this time there is a rapid increasepip, butthere  calaveras County representation are not systematically better
is insufficient energy for a hop to occur as shown in panel ¢. than the TFS results in either the adiabatic or the diabatic
The most serious difficulty with the TFS method is the issue representation. However, for certain cases that we have exam-
of representation. The adiabatic and the diabatic representationsned the Calaveras County representation correctly describes
will have different forms of interstate coupling, and thus hopping the trends of dynamical quantities as a function of total energy
between surfaces is likely to occur at different places and at whereas other representations do not (see, for example, ref 26
different times. This is illustrated in Figure 6, where the lifetime where the Calaveras County representation is equal to the
of the NaH excited-state complex with parametrization 6 is adiabatic representation for Nalgarametrization 6, and it is
plotted versus total energy. In the diabatic representation surfaceequal to the diabatic representation for Ngbhrametrization
hops occur more frequent®,and once trajectories hop to the 5F). Figure 8 illustrates the reaction and quenching probability
lower repulsive surface, they rapidly dissociate before they can for two different initial states for parametrization 1 of the MHH
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10F TABLE 3: (Column I) Number of Cases (Defined in Section
N r — ] 1) for Which Each Method Was within 20% of the Best
N r ] Method for Each System and (Column 1) Number of Cases
505 [ . for Which Each Method Had an Error Twice as Large as
I ~——c T . the Best Method for Each System
0.0 A R i vier et S ja | M
180 1 NaH? (2 Parametrizations, 6 Cases)
g o0 f E TFS—adiabatic 5 2
i Th TFS—diabatic 5 2
0 ! * t : TFS—Calaveras County 6 3
=25 Ehrenfest 2 6
£~ MHHP (2 Parametrizations, 12 Cases)
S20¢ TFS—adiabatic 2
T 15 TFS—diabatic 8 0
TFS—Calaveras County 9 0
10F Ehrenfest 4 7
< BrH¢ (1 Parametrization, 6 Cases)
C TFS—adiabatic 5 1
Bos | Ehrenfest 4 2
% [ MXHY (3 Parametrizations, 18 Cases)
/ TFS—adiabatic 12 2
0.0 e . TFS—diabatic 11 4
3 4 5 6 7 TFS—Calaveras County 11 2
R (bohn) Ehrenfest 5 9
Figure 7. CSS trajectory undergoing a quenching process for the initial CSS 6 2

conditions described in Figure 2. (a) The solid line representand
the dashed line represents,. (b) The Jacobi anglg. (c) The HX
bond length (1x). (d) The potential energy.

aFrom refs 9, 42, 47° From refs 21, 22¢ From refs 16, 749 From
ref 27.

guenching probability for the unimolecular decay of NaHi

I 03¢ parametrization 6. In this case, the Calaveras County representa-
oz | 0.2 tion is the adiabatic representation, and 7 of the 10 energies
<t & that we studied were threshold energies that occurred above
o1 f 0.1 the classical asymptotic energy but below the asymptotic zero-
. point energy?® If we neglect these threshold energies in the
0.0 00 —= calculation of the error, the error is reduced to 0.08 for all three
10 10 TFS methods, and it is increased to 0.99 for the Ehrenfest
E E method (the Ehrenfest method predicts less quenching because
09 F 08 F . . ;
ok o6 F unlike th(_a TFS metho_ds, which must quench_ at energies below
L Y 04 E the classical asymptotic energy, Ehrenfest trajectories can always
06 02 E end up on a mixed surfa}ce and at low energies this surfgce
05 0.0 E closely resembles the excited-state surface). When one considers

108 108 143 148 106 110 114 1.8 that in general semiclassical methods will have difficulty in
threshold regions and in regions where zero-point energy
conservation is important, the inaccuracy of the Calaveras

Figure 8. Reaction and quenching probability for parametrization 1 o P
of the MH, system with H initially in the v = 0 vibrational state. The gg\?er:g representation in this single case does not seem too

open triangles represent the TFS results in the adiabatic representations .
the open squares represent the TFS results in the diabatic representation, IN some cases, for instance, the MXH system and param-
the stars represent the quantum mechanical results, and the solid lineetrization 2 of the MHH system, the TFS results do not depend
represents the TFS results in the Calaveras County representation. (asignificantly on representation, and of course the Calaveras
The qUenChing probablllty for Hnltla”y in the] = 0 rotational state. County representa“on is as good as either of the other two
(b) The quenching probability for Hnitially in the j = 2 rotational representations.

state. (c) The reaction probability forkhitially in the j = O rotational S .
state. gdg The reaction grobabilitz forzﬁhitiallzinthe} = 2 rotational W? may gain |n3|ght_ |nto_the robustness of a method by
state. considering how many times it has the smallest error or an error
that is very close to the smallest error (say within 20%) for all
system as a function of total energy. Clearly, the Calaveras of the methods we consider, and how many times it has an error
County representation selects the best of either the adiabatic otthat is at least twice as large as the best method. Two of the
diabatic representation. Note also that in this case the mostsystems that we have studied are characterized by three final
accurate representation depends on the initial state. When thelynamical quantities, and the remaining six systems are
initial rotational quantum number is zero, the diabatic repre- characterized by six dynamical quantities. This gives 42 cases
sentation is most accurate, and when the initial rotational for which we can compare methods. The number of cases for
guantum number is two, the adiabatic representation is mostwhich each method is within 20% of the best and the number
accurate. The Calaveras County representation successfullyof times for which it has an error at least twice as large as the
predicts this trend. best are illustrated in Table 3. Table 3 shows that the TFS
The quenching probability for the Nat$ystems is the one  methods are very robust; that is, when they are not the best
quantity for which the Calaveras County representation doesthey still do not often have relatively large errors. This is in
not appear to be as good as the diabatic representation as seetontrast to the Ehrenfest method, which although sometimes
in Table 1. The largest contribution to this error is from the being the best, in many cases has an error relatively larger than

energy (eV) energy (eV)
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the best method. Table 3 also shows that the CSS method is (19) Topaler, M. S.; Hack, M. D.; Allison, T. C.; Liu, Y.-P.; Mielke, S.
more robust than the Ehrenfest method. As mentioned in the - ég;“"gg't‘el’ .Déi‘lli‘gér“,\‘;lh_'aéég- (,fA]j Cgﬁg:ﬁ P}Qﬁﬂ;g&lggffjgi
original CSS papéf and above, large-gap systems will provide (21) Topaler, M. S.; Allison, T. C.; Schwenke, )5. W.; Truhlar, D.J.
the most difficult tests for the CSS method, but also the best phys. Chem. 4998 102, 1666.

opportunity to demonstrate superiority. In these cases, the mixed-_ (22) Topaler, M. S.; Allison, T. C.; Schwenke, D. W.; Truhlar, D.5
final-state problem of the Ehrenfest method will be more even Chgg)- ':;3’3%323 1\?9"_3_3'_'2;&%(9?\? }319;333“;?-[) G Truhlad. Phye
more severe than for the examples given in section IV.A, and chem. A1999 103 6225. o T Sl

the CSS method should be even better by comparison. (24) Hack, M. D.; Jasper, A. W.; Volobueyv, Y. L.; Schwenke, D. W.;
Truhlar, D. G J. Phys. Chem. A999 103 6309.

(25) Gray, S. K.; Petrongolo, C.; Drukker, K.; Schatz, G.JCPhys.
Chem. A1999 103, 9448.
When only the overall, average errors are considered, thereT (ﬁlﬁ) HDaCé,JM-PI?]-; Jacsﬁer' A/-X(\)/\éa \{gft;lﬁv, Y. L.; Schwenke, D. W.;

H runlar, D. . yS. em. 3 .
does not appear to be a method that s_ystematlcall_y outperfqr_ms (27) Volobuev, Y. L.. Hack, M. D.; Topaler, M. S.: Truhlar, D. G.
the others. However, when one examines dynamical quantitieSchem. phys200q 112, 9716.
in greater detail the situation changes. The CSS method, for (28) Salem, L.Electrons in Chemical Reaction®Viley: New York,
example, by removing the mixed-final-state aspect of the 1982. o _ ,
Ehrenfest method results in significantly reduced errors in the Baﬁzgt'sggg?osﬁ J,\F;I”Aergggg Principles of Chemical Reactiodsnes and
final .'ntemal energy (as characterized by the vibrational _and (30) Michl, J.; Bonacic-Koutecky, VElectronic Aspects of Organic
rotational quantum numbers) and removes the systematicallyPhotochemistryWiley: New York, 1990. ‘ ‘
low probability of reaction of the Ehrenfest method. We expect Ch(31) t’V“CEL J. '“,Tr?eorset'cja' ﬁgd_ CO?PUt?t'%'a'A’V'OdeLS 'I‘_Of grggﬂc
. e . emistry Formosinno, L Jy Slzmadia, |. ., Arnaut, L. . S.;

these effects to be more significant for systems with larger  ver: Dordrecht, 1991; p 207.
energy gaps.

(32) Hirschfelder, J. O.; Meath, W. Adv. Chem. Phys1967, 12, 3.
We also note that the TFS methods are very robust; for (33) Garrett, B. C.; Truhlar, D. Gtheor. Chem. Ad Persp.1981, 6A,
example, even when they are not the best method they still have?16-
relatively low errors. Furthermore, one of the largest drawbacks ggg $3|?; ”Jt_mcs.t'IE&?&%EQ?'Mﬁesﬁlfféglﬁi‘iffﬁ“er’ W H
of the TFS methods, that of basis set dependence, may beed.; Plenum: New York, 1976; Part B, p 217.
somewhat alleviated by choosing the Calaveras County repre- (36) Mead, C. A;; Truhlar, D. GJ. Chem. Phys1982 77, 6090.
sentation for surface hopping. When the results of calculations ~ (37) Tully, J. C.J. Chem. Phys1973 59, 5122.
in the adiabatic and diabatic representations do not differ ~ (50) Numrich, R. W.; Truhlar, D. G3. Chem. Phys1975 79, 2745.

. . . (39) Delos, J. B.; Thorson, W. R. Chem. Physl979 70, 1774.
significantly, the Calaveras County representation is of course  (40) Baer, M.Mol. Phys 198Q 40, 1011.

V. Concluding Remarks

as good as either of the other systematic choices of representa-
tion. However, when the results do depend on representation,

the Calaveras County representation tends to choose the most
accurate representation, even when this optimum representation

is a function of the initial state.
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