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The present article reviews two classes of semiclassical (mixed quantum mechanical/classical) methods for
investigating multielectronic-state dynamics: the trajectory surface-hopping (TSH) method and the time-
dependent self-consistent field (TDSCF) method. The recent availability of accurate quantum mechanical
dynamics calculations for a variety of realistic three-body two-state potential energy matrices has allowed an
assessment of the validity of semiclassical multisurface dynamics methods that are applicable to larger systems.
These studies indicate that Tully’s fewest switches algorithm is the best available TSH method and that the
Ehrenfest method is the best previously available TDSCF method. The fewest switches surface-hopping method
has relatively small errors even when it is not the best method while the Ehrenfest TDSCF method tends to
have larger errors when it is not the best. However, the fewest switches algorithm involves unphysical
discontinuities in momenta, and the results may depend on the choice of representation. Furthermore, the
surface-hopping algorithm is frequently frustrated in its attempt to maintain ensemble-average self-consistency.
The Ehrenfest method removes all these troublesome aspects but at the cost of producing unphysical mixed
states, which are responsible for its larger errors in observables. A recently introduced TDSCF method, the
continuous surface-switching method, removes the unphysical mixed states of the Ehrenfest method, and in
initial tests it produces results that are systematically better than those calculated by the Ehrenfest method.
The present article illustrates several of these aspects of nonadiabatic trajectory methods pictorially.

I. Introduction

Semiclassical dynamical methods, that is, dynamical theories
that combine classical mechanics and quantum mechanics,1,2

provide an appealing way to gain insight into systems for which
accurate quantum mechanical calculations are intractable or in
which a better understanding of experimental results is desired.
Purely classical dynamical methods3,4 (or quasiclassical meth-
ods,5,6 which are classical trajectories with quantized initial
conditions) are often applied to systems that are too large to
study quantum mechanically; however, in many cases multiple
electronic states are involved, and some method beyond the
Born-Oppenheimer approximation must be employed for
treating the inherently quantum mechanical electronic degrees

of freedom.7,8 It is still the case that for systems with more than
three atoms and more than one electronic state a converged
quantum mechanical description is infeasible; in fact, only
recently have accurate descriptions of full three-dimensional
three-body two-electronic-state systems been presented.9-27

Nevertheless, there is a strong interest in large photochemical
systems,28-31 and there is a corresponding interest in the
development of accurate semiclassical methods that might be
applicable to such problems.

Until recently, the lack of benchmark accurate quantal results
has prevented a validation of the various semiclassical methods
that have been proposed. In our view, systematic testing of
existing methods is the first step toward understanding their

© Copyright 2000 by the American Chemical Society VOLUME 104, NUMBER 34, AUGUST 31, 2000

10.1021/jp001629r CCC: $19.00 © 2000 American Chemical Society
Published on Web 08/01/2000



strengths and weaknesses and, we hope, toward developing
improved methods. This report summarizes our recent work on
testing different kinds of semiclassical methods on a variety of
electronically nonadiabatic chemical reaction types in gas-phase
systems. We hope to understand which semiclassical methods
can provide a useful description of the dynamics for various
cases so that we or others can use this information to design
improved methods that will be accurate for a wide range of
systems. In this paper we review our recent work and try to
determine which, if any, of the semiclassical methods we have
examined thus far is the best and for which systems each of the
methods we consider is likely to be accurate.

The work presented here should be of interest to a broad cross
section of chemists, and since these groups often use quite
different words to describe the same phenomena and similar
concepts, a few words on nomenclature and background should
be helpful. All chemical processes may be divided into two
classes: those in which the electronic state does not change
and those in which it does. For nonreactive collisions these may
be called electronically elasticand electronically inelastic,
respectively. A very similar but somewhat less precise distinc-
tion is implied by the common termsthermal reactions28-31

for reactions initiating in the ground electronic state,photo-
chemical reactions28-31 for those initiating in an electronically
excited state, and, less frequently encountered,chemiluminescent
reactionsfor those producing an electronically excited species.
At a more detailed level of understanding, one categorizes a
process not just on the basis of initial and final states, but on
the evolution of these states throughout the dynamical event.
The most unambiguous set of states for expanding an electronic
wave function is the set ofadiabatic or Born-Oppenheimer
electronic states that diagonalize the electronic Hamiltonian
when the nuclear positions are fixed.28-34 Finite nuclear veloc-
ities cause nonadiabatic transitions between these states.7,8,32-35

Depending upon whether such a transition has or has not
occurred, we classify processes (energy-transfer collisions and
chemical reactions) aselectronically adiabaticor electronically
nonadiabatic. In semiclassical language, we envision the
transition as corresponding to aswitchfrom nuclear motion on
one adiabatic potential energy surface to nuclear motion on
another. In some semiclassical theories, such switches involve
discontinuous changes in nuclear momenta, and they are also
called hops. In general the potentialsurfacesare the sum of
electronic energy and nuclear repulsion for a given electronic
state and nuclear geometry. Technically these are energy
hypersurfaces, but we usually just say “surfaces.” The surfaces
corresponding to the adiabatic electronic states are called
adiabatic surfaces oradiabats.

The electronically adiabatic states are not the only possible
basis for expanding the electronic wave function. In an accurate
solution of the Schro¨dinger equation, the use of any basis leads
to the same results for physical observables, but this is not true
for approximate methods. Furthermore, some bases may be more
efficient computationally or lead to more insight. For example,
one is often intereseted in transitions between covalent (A:BC)
and ionic (A+BC-) states, where we have usedValence bond
language to label the states. The ionic state may be the second
adiabatic state for A far from BC, but it may be the first (lowest-
energy) adiabatic state for tight geometries or for products A+B-

+ C). Thus the valence bond labeling is not in one-to-one
correspondence with the adiabatic labeling, and there must be
surface crossings(places where two surfaces are equal) of the
valence bond states along the reaction path. Near the surface
crossings, if the adiabatic states are written as linear combina-

tions of the valence bond states, there will be appreciable
weights for more than one of them. As the system passes the
crossing, the weights shift relatively rapidly, for example, from
(1, 0) toward (0, 1). The nuclear momentum operator (which is
a derivative operator in nuclear coordinates) acting on these
weights causes a large coupling, so the system may or may not
stay in the same adiabatic electronic state. Under some condi-
tions it may be most probable that the valence bond character
does not change, corresponding to a nonadiabatic transition
between adiabatic states. In such a case it may be more physical
to use a valence-bond-like basis. A systematic way to do this
is to use adiabatic basis. Whereas adiabatic states diagonalize
the electronic Hamiltonian but are coupled by nuclear momen-
tum, diabatic states have no nuclear momentum coupling but
are coupled by off-diagonal elements (U12) of the electronic
Hamiltonian. Thus the coupling is a vector (calledd12) in an
adiabatic representation but a scalar in a diabatic one. We hasten
to point out that although exact adiabatic states exist in principle,
exact diabatic states do not exist36 (because in general one cannot
make all components ofd12 vanish simultaneously). In practice
we per force use approximate adiabatic states (because of
computational limitations), and we also use approximate diabatic
states (because exact diabatic states do not exist). We note that
the adiabatic potential surfaces are calledV1 andV2, and they
are the eigenvalues of the diabatic potential surface matrix

The diagonals of this matrix are called diabatic surfaces or
diabats. The precise methods that can be used to create an
approximate diabatic basis are discussed elsewhere28,33,36-48 and
will not be reviewed here. Instead we are interested in how well
the questions of whether more accurate results can be obtained
by solving the semiclassical problem of coupled nuclear motion
and electronic state evolution in a diabatic representation or an
adiabatic representation and what is the best semiclassical
method for calculating such results.

Crossings of the adiabatic states are less frequent than diabatic
crossings. WhenU12 is zero by symmetry, the adiabats and
diabats are the same (a case not considered further in this article),
but whenU12 can be nonzero, diabats can cross in a space of
dimensionF - 1 (whereF is the number of internal degrees of
freedom, equal to 3 for triatomics), whereas adiabats can cross
in a space of dimensionF - 2. Such adiabatic crossings are
calledconical intersections.28-31,49,50

II. Review of Methods
The semiclassical methods considered here are all trajectory-

based methods including the full dimensionality of the system.
We consider two different classes of methods: the trajectory
surface-hopping (TSH) approach8,35,51-54 and the self-consistent
potential (SCP) approach.19,55-61 Both of these approaches may
be thought of as versions of the time-dependent-self-consistent
field (TDSCF) method. For example, the TSH method may be
derived by requiring that in the limit of degenerate potential
surfaces the number of trajectories that are propagating on a
given potential surface at any given time is proportional to the
average of the diagonal electronic density matrix element
corresponding to that surface. The self-consistency of the surface
governing nuclear motion with the electronic density matrix is
thus obtained for the entire ensemble, in that limit. The SCP
method may also be employed with an average over an ensemble
of trajectories,59-61 but most work has involved more practical
versions19,55-58 in which the potential energy governing the

(U11 U12
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)
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motion of a single trajectory is consistent with the electronic
density matrix elements calculated along that trajectory. That
is, self-consistency is obtained for each trajectory individually
and independent of the other trajectories. In this section we
review one example of each type of method for the case of two
electronic states. In particular, we review the Tully’s fewest
switches (TFS)52 version of TSH, and we review the Ehrenfest
version19,55 of SCP. In other work we tested19,21-23 another
surface-hopping method, the Blais-Truhlar method,51 and we
tested22,23 an alternate SCP method, the classical electron
method55 of Meyer and Miller. Both methods have serious
shortcomings. Although the Blais-Truhlar method predicts
reasonable probabilities of producing nonadiabatic products for
systems with strong electronic coupling, it typically predicts
zero chance of forming these products for systems with weak
electronic coupling.23 The classical electron method, because
of a Langer-type62 modification, often populates closed elec-
tronic states and tends to predict final rotational and vibrational
moments that are too large.22,27Since Tully argued that surface
hopping is not compatible with a diabatic representation,8 and
since the Ehrenfest method is independent of representation,
and since the fewest switches and Ehrenfest algorithm perform
better than the Blais-Truhlar and classical electron algorithms,
we take the TFS surface-hopping method in the adiabatic
representation and the Ehrenfest self-consistent potential method
to be the standard representatives of their classes.

In this section we also review improvements in each of the
two representative semiclassical methods. For the TFS method,
the improvement is a criterion for selecting between adiabatic
and diabatic representations to find the one that leads to the
more accurate results. For the Ehrenfest method, the improve-
ment is a method to include decoherence so that trajectories
finish in a pure state when they leave the region where the states
are coupled; the improved Ehrenfest method is called continuous
surface switching.

In all of the semiclassical trajectory methods that we consider,
a distinction is made between quantum variables,r , and classical
variables,R. The classical variables are assumed to be described
by classical trajectoriesR(t), and the quantum variables are
described by the time-dependent Schro¨dinger equation. For the
case of two electronic states, the electronic wave function is
given by

whereφi is a basis function, the coefficients evolve according
to35

where

andHel is the electronic Hamiltonian. In a diabatic basis,Hij )
Uij and dij ) 0. In an adiabatic basisHii ) Vi and Hij ) 0.

Instead of working with the coefficientsc1 and c2, it is often
convenient to use the electronic density matrix

where the diagonal elements are the populations of the states
and the off-diagonal elements are the electronic coherences. It
can be seen in eqs 2 and 3 that the choice of the classical
trajectory determines the evolution of the quantum wave
function. In both the trajectory surface-hopping methods and
self-consistent potential methods the electronic density matrix
elements are used to self-consistently determine the paths of
the classical trajectories, although each method accomplishes
this in a different fashion.

II.A. TFS Method. The TFS method is the surface-hopping
method that has the fewest number of surface switches necessary
to obtain ensemble-averaged consistency between the quantum
and the classical degrees of freedom in the limit ofH11(R) )
H22(R). (Of course, the surfaces are never degenerate for allR,
but it is only in this limiting case that surface hopping can ever
be self-consistent, so the limiting case is used to derive the
method.) Self-consistency is accomplished by propagating an
ensemble of trajectories on the diagonal potential matrix
elements, with each trajectory being independent of the others.
The probability that a trajectory that is propagating on potential
surfaceHii(R) at a timet1 will hop to surfaceHjj(R) at time t2
is given by

The results of TSH methods depend on the choice of the
vector used to adjust the nuclear momentum during surface hops.
We have tested two difference choices for the hopping vector:
the gradient of the difference of the adiabatic potential energies
and the nonadiabatic coupling vector. We have typically found
that the results are not too sensitive to this choice21 when hops
occur in regions of strong nonadiabatic coupling, as both vectors
point in nearly the same direction in these regions. In regions
of weaker nonadiabatic coupling, when the two vectors do point
in somewhat different directions, the nonadiabatic coupling
vector was found to give better results.24 Furthermore, the
nonadiabatic coupling vector is the choice suggested by
semiclassical analogies,8,63 and therefore this is the choice we
make for the present work.

In practice, the self-consistency of the TFS method may be
violated. One reason for this is that hops from the lower surface
to the upper surface may be energetically forbidden. More
generally, there may be insufficient momentum along the vector
that is used to adjust the momentum to allow a hop to occur.
Either of these happenstances is called a frustrated hop. The
procedures we have used in these cases are, in the first case, to
continue propagating on the initial surface with no momentum
discontinuity and, in the more general case, to reverse the
component of the momentum that lies along the hopping vector.
(This follows from a model6,64 in which a single potential surface
corresponds to one or the other ofH11 andH22 on the two sides
of a hopping seam). An alternate procedure advocated in the
literature65 is to treat both cases the first way. Although we have
not tested this alternate procedure for strongly coupled systems,
we have found that for very weakly coupled systems the errors
are slightly smaller for this alternate procedure than for the first
procedure discussed,66 and this remains an area of investigation.

Φ(R(t); r ) ) c1(t) φ1(r ; R(t)) + c2(t) φ2(r ; R(t)) (1)

c̆1(t) ) -c2(t)[ i
p
H12(R) + R4 ‚d12(R)]η1(t)

η2(t)
(2)

c̆2(t) ) -c1(t)[ i
p
H21(R) + R4 ‚d21(R)]η2(t)

η1(t)
(3)

ηi(t) ) exp(- i
p
∫tHii(R) dt) (4)

Hkj(R) ) 〈φk(r ; R)|Hel(r ; R)|φj(r ; R)〉 (5)

dkj(R) ) 〈φk(r ; R)|∇Rφj(r ; R)〉 (6)

(F11 F12

F21 F22)) (|c1|2 c1
/c2

c2
/c1 |c2|2) (7)

Pifj ) max[Fii(t1) - Fii(t2)

Fii(t1)
, 0] (8)
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Another suggestion to remedy the problem of frustrated surface
hops in the adiabatic representation is to replace the velocity in
eqs 2 and 3 with an average velocity that points in the direction
of the velocity on the surface the trajectory is currently being
propagated on and has the magnitude of the geometric mean of
the velocities the trajectory would have if propagated on either
potential surface.67 Energetically prohibited hops will not occur
in this prescription, since when the kinetic energy on the upper
surface becomes zero the coefficientsc1(t) and c2(t) will be
constant and no hops will occur. However, we have found that
this procedure systematically increases the total nonadiabatic
probability.66 This is probably because such a treatment increases
the rate at whichc2(t) changes with time (by mixing in ground-
state kinetic energy) and decreases the rate at whichc1(t)
changes with time (by mixing in excited-state kinetic energy
character). Furthermore, such a treatment is not applicable to
trajectory propagation in the diabatic representation because in
that case the coupling is not an explicit function of velocity.

Alternate forms for the hopping vector were introduced in
an earlier work24 in an attempt to improve the poor self-
consistency of the TFS method resulting from momentum-
prohibited surface hops. These vectors were obtained by rotating
the hopping vector toward the momentum vector by the smallest
amount necessary to allow a hop to occur. However, these
rotated vectors were found to give poorer internal energy
distributions than the nonrotated hopping vectors and so will
not be considered further here.

II.B. Choice of Representation for the TFS Method.The
results of the TSH calculations depend on the representation
(adiabatic or diabatic) of the electronic basis functions. This is
a drawback of the method; the ideal semiclassical method should
share with accurate quantum mechanics the invariance of the
results to the choice of basis functions. However, since the
results do depend on the choice of basis functions, we want to
use the basis functions that yield the most accurate results. We
have shown in earlier work26 that there is a correlation between
the representation in which the TSH calculations are most
accurate and the number of times that trajectories switch
surfaces. We anticipate, however, that although a small number
of successful hops may occur in one representation, the self-
consistency of the TFS method in that representation may be
poor if a large number of frustrated hops occur. In this work
therefore we modify our strategy; in particular we now select
the representation in which the fewest number of surface-hop
attempts occur. Note that for the two cases we studied pre-
viously26 both the minimum surface-hop criterion and the
minimum surface-hop-attempt criterion yield the same choice
of representation, although in general this will not be the case.
We label the representation that our new criterion selects the
Calaveras County representation after the location where strate-
gies were devised to keep a well-known frog from attempting
a hop,68 and we present TFS results for this representation in
addition to the adiabatic and diabatic representations. For the
sake of brevity this representation may also be referred to as
the least hopping attempts (LHA) representation. Note that for
an ensemble of trajectories beginning in a single initial state
the Calaveras County representation will give the same results
as either the adiabatic or the diabatic representation. However,
for results that are averages over several initial states, the results
of using the Calaveras County representation will not be
equivalent to either the adiabatic or diabatic representations as
the Calaveras County representation may change for different
initial states.

Other criteria for selecting the proper representation to

perform TFS calculations in have been reviewed elsewhere26

and will not be mentioned here. We have found that the hop-
attempt minimizing criterion that defines the Calaveras County
representation is better than the others we have examined.

It is also possible that there is some representation that is
neither adiabatic nor diabatic in which TFS calculations agree
even better with quantum results than either the adiabatic or
the diabatic representation. This has been examined in more
detail elsewhere69 and is a worthwhile subject for further study.

II.C. Ehrenfest Method. In the Ehrenfest method the
potential energy is given by the expectation value of the
electronic Hamiltonian

whereΦ is the electronic wave function of eq 1. The Ehrenfest
method is independent of the choice of representation of the
electronic basis functions,55 and it avoids several other undesir-
able feature of the TSH methods as well. Since surface hops
do not occur, use of the Ehrenfest method avoids having to
determine along which direction the momentum should be
adjusted during a surface hop. The Ehrenfest method also always
maintains its self-consistency since there are no frustrated hops.
The biggest drawback of this method is that trajectories
propagating according to eq 9 may finish on a mixed state that
is not an eigenvalue of the asymptotic electronic Hamiltonian.
This is as much a practical difficulty as it is a formal one;
trajectories that leave the interaction region on a mixed potential
surface will not have the correct internal energy distributions.
Furthermore, if for a particular asymptotic arrangement one of
the diagonal potential matrix elements of eq 5 is very energeti-
cally inaccessible, then the potential energy defined by eq 9
will almost always be energetically inaccessible, and the
Ehrenfest method may predict zero probability of ending in that
arrangement even though there is a dynamically accessible
surface.

II.D. An Improved Self-Consistent Potential Method: The
CSS Method. Recently, we presented a new self-consistent
potential method called the continuous surface-switching (CSS)
method in which the mixed state is resolved into one or the
other pure electronic state as the trajectory leaves the region of
interstate coupling.27 This resolution is accomplished in such a
way that the probability of finishing on a given surface, when
averaged over an ensemble of trajectories, is consistent with
the average electronic density matrix elements. Thus the method
is still self-consistent, but in an ensemble-average sense rather
than trajectory by trajectory. We may also think of CSS as a
type of surface-hopping method in which the surface hops are
replaced by switches that occur continuously in time.

Substituting eq 1 into eq 9 gives

wherewij(Fij) ) Fij. The essence of the CSS methods is to allow
the weightswij to be more general functions ofFij. In particular,
we leave the off-diagonal weightswij unchanged, but we define
the diagonal weightswii so that they approach the density
elementsFii in regions of strong coupling but go to either 0 or
1 in asymptotic regions. The precise form of the function used
to determine the weights is somewhat arbitrary and remains a
topic of research. We note, however, that the TFS method, while
quite successful, also involves a degree of arbitrariness in the
selection of the fewest switches criterion. One reason to prefer
this criterion is simplicity,52 and we used a similar guide in the

HE(R) ) 〈Φ(r ; R)|Hel(r ; R(t))|Φ(r ; R)〉 (9)

HE(R) ) ∑
i
∑

j

wij(Fij) Hij(R) (10)
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selection of our functions forw11 andw22 in our initial tests of
the CSS method.27

In general, CSS calculations could be carried out in either
an adiabatic or a diabatic representation, although so far we
have only tested the latter. However, in regions of strong
interstate coupling the method becomes equivalent to the
Ehrenfest method, which is independent of representation, and
in regions of weak interstate coupling the diabatic and adiabatic
representations are very similar. Therefore the CSS method has
been designed in such a way that it will be less sensitive to the
choice of electronic representation than the TSH method.

II.E. Final-State Assignment. A general problem in all
trajectory calculations is that the classical values of the
vibrational and rotational quantum numbers are not automati-
cally integers. As discussed above, a similar problem occurs in
the Ehrenfest method for the electronic quantum number, but
for the TSH and CSS methods, the final electronic quantum
number is assigned on the basis of the surface in which the
trajectory finishes.

For all calculations used to compute mean unsigned errors
in this paper, the final vibrational and rotational quantum
numbersV and j were assigned by the linear smooth sampling
(LSS)6,22,70-72 algorithm. In this algorithm, each trajectory
contributes to the four discreteV, j states that bracket the final
continuous numbers resulting from the trajectory calculation.
The weight of each of these discreteV or j values is a linear
function of the closeness of the continuous variable to the
discrete values. For TSH and CSS trajectories, each trajectory
contributes to four final states (two vibrational quantum numbers
× two rotational quantum numbers), while for the Ehrenfest
method each trajectory contributes to eight final states (two
vibrational × two rotational × two electronic). Two other
methods for assigning the final-state variables that we have
previously tested are the histogramming6,22 algorithm and the
quadratic smooth sampling (QSS) algorithm.16,73 In the histo-
gramming method each of a trajectory’s final continuous
quantum numbers is simply rounded to the nearest discrete
quantum number. The QSS method is similar to the LSS method
except that the weight is a quadratic function of the closeness
of the continuous variable to the nearest discrete quantum state.

Since every Ehrenfest trajectory finishes in an electronic state
that is a mixture of the two pure states, it seems natural that in
the assignment of the electronic variable every trajectory should
contribute to final dynamical quantities associated with both
electronic states. The LSS and QSS algorithms accomplish this;
the histogramming algorithm does not. With no particular reason
to prefer one of the smooth sampling methods to the other, we
select LSS for its simplicity. We have typically found, however,
that all three of these procedures result in similar predictions
for the final dynamical quantities (although one exception to
this is described in a later section). For consistency, we chose
to use LSS for all of our trajectory methods and all three
(vibrational, rotational, and electronic) sets of quantum numbers.

In some cases, especially for the Ehrenfest method, this
procedure results in trajectories being assigned to states whose
energies exceed the total energy of calculation. We have
explored the possibility of reassigning these trajectories to lower-
energy states but have found that this generally decreases the
overall accuracy of the calculation,22 and so we do not use this
reassignment procedure in the present review.

III. Examples

In this section we review the systems for which we have
performed both quantum mechanical dynamics calculations and

semiclassical calculations. All of the systems we discuss are
three-body systems performed without any dimensionality-
reducing assumptions (such as collinear collisions or spherical
interaction potentials); however, we consistently omit electronic
angular momentum and electronic Coriolis coupling, and we
consider only zero total angular momentum. All of the systems
have realistic two-state potential energy matrices defined in the
diabatic representation (the adiabatic potential surfaces are
obtained when necessary by diagonalization). The symbols used
in our tables and in our discussion are defined by the following
equations

or

where an asterisk denotes electronic excitation. The quantities
V andj are the final rotational and vibrational quantum numbers,
with primes distinguishing nuclear arrangements. The probability
of process Q is called the quenching probability,PQ, and the
probability of process R is called the reaction probability,PR.
Although the unimolecular decomposition process labeled by
D may be thought of as a photodissociation reaction, we have
in other work24,26 referred to this as a quenching process since
the species ABC* is excited and the products are not, and we
continue to use this description in the present review.

The NaH2 system was studied at energies where the NaH+
H arrangement was inaccessible. This is a large gap system;
the Na excitation energy is 2.1 eV. We studied two parametri-
zations of this system (5F9,42 and 647); differences have been
discussed elsewhere.47 NaH2 has a line of conical intersections
at C2V geometries, and it is accessible in both parametrizations;
however, it is more readily accessible for the 5F case than in
case 6.

We studied two different parametrizations of the MHH
system, where M is a model metal with an excitation energy of
0.76 eV. In this system the product MH+ H arrangement is
energetically accessible. The two different parametrizations are
otherwise similar to the NaH2 system; they differ from each
other in that one of them (parametrization 1)21 the M* + H2 f
MH + H reaction is exothermic, while in the other (parametri-
zation 2)22 it is endothermic.

We also studied reactions in the MXH system, where M is a
model metal and X is a model halogen atom. These systems do
not have conical intersections, but they do have avoided
crossings (i.e., the diabats do cross, but the diabatic crossing
seam does not intersect a region whereU12 ) 0). We studied
three parametrizations of this system;47 they differ in the strength
and broadness of theU12 coupling surface and are labeled WL,
SL, and SB. The first letter represents the strength of the diabatic
coupling elementU12 (strong or weak) and the second letter
represents the spatial extent of the diabatic coupling (localized
or broad).

The last system we examined is the BrH2 system.16,74 This
system has a small excitation energy (0.5 eV), and in this system
neither the adiabats nor the diabats cross.

The differences in the systems that we studied are pictured
in Figure 1. Panels a, c, and e illustrate the diabatic matrix
elements, while panels b, d, and f illustrate the adiabatic curves.
Panels a and b show MHH parametrization 1, in which both
diabats and adiabats cross. Panels c and d show MXH
parametrization SL, in which diabats cross but adiabats avoid

A* + BC(V, j ) f A + BC(V′′, j ′′) (Q)

f AB(V′, j ′) + C (R)

ABC* f A + BC(V′′, j ′′) (D)
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crossing, i.e., there is no conical intersection. Panel d shows
how the adiabatic curves are not as smooth as the diabatic ones.
This, plus the economy of the coupling being a scalar rather
than a vector, is one of the motivations for modeling systems
diabatically. Panels e and f illustrate the BrH2 system, in which
neither the adiabats nor the diabats cross. The NaH2 parametri-
zations are similar to panels a and b except that the product
arrangement opens at 2.8 eV while the excitation energy of Na
is 2.1 eV.

For all of the systems described above except for parametri-
zation 6 of the NaH2 system we performed bimolecular collision
calculations, and for the two parametrizations of the NaH2

system we also performed unimolecular decay calculations.
This collection of eight systems and reactions, while not

exhaustive in the number of different possible types of nona-
diabatic processes, does constitute a test set with a variety of
different surface types for comparing approximate semiclassical
methods to accurate quantum mechanical calculations.

IV. Discussion of Results

For all eight cases, we calculated errors in the quenching
probability, the reaction probability (where applicable), and the
final vibrational and rotational quantum numbers of the final
diatomic fragments. The errors in the probabilities and final
vibrational and rotational quantum numbers were calculated by
comparing to the results of converged quantum dynamics calcu-
lations. For some of the systems (see original papers19,21-24,26,27)
we considered several system energies and/or initial states, and
in such cases the mean absolute errors are averaged over all
energies and initial states. For NaH2, MHH, and MXH, the
results are further averaged over the two or three parametriza-
tions of that type. The mean unsigned errors (i.e., mean absolute
deviations from accurate quantal results) are summarized in
Table 1.

IV.A. What Goes Wrong? The most serious drawback of
the Ehrenfest is that the potential energy defined by eq 9 does
not become equal to one of the pure potential energy surfaces
when the trajectory leaves the region of interaction. This is
illustrated more clearly in Figure 2, which describes an Ehrenfest
trajectory undergoing a quenching process. Note that all of the
plotted quantities are smooth functions ofRM-HX. However, the
trajectory ends in a mixed state withF22 ) 0.42; in panel d it
can be seen that the minimum potential energy along the exit
path is 0.32 eV, instead of 0 or 0.76 eV as it would be if the
trajectory finished in a pure ground or excited state, respectively.
A consequence of the unquantized electronic energy is that the
final vibrational-rotational energy distribution does not re-

Figure 1. Schematics of several potential energy surfaces for A or
A* + BC f AB + C. (a) Diabatic matrix elements for MHH
parametrization 1. (b) Adiabatic matrix elements for MHH parametriza-
tion 1. (c) Diabatic matrix elements for MXH parametrization SL. (d)
Adiabatic matrix elements for MXH parametrization SL. (e) Diabatic
matrix elements for the BrH2 system. (f) Adiabatic matrix elements
for the BrH2 system.

TABLE 1: Mean Unsigned Errorse

PR PQ 〈V′〉 〈j′〉 〈V′′〉 〈j′′〉
NaH2

a (Two Parametrizations)
TFSsadiabatic - 0.23 - - 0.27 1.0
TFSsdiabatic - 0.12 - - 0.27 1.2
TFSsCalaveras Co. - 0.23 - - 0.18 1.0
Ehrenfest - 0.48 - - 0.52 2.1

MHHb (Two Parametrizations)
TFSsadiabatic 0.12 0.10 0.05 1.2 0.14 1.0
TFSsdiabatic 0.13 0.07 0.04 1.1 0.11 0.9
TFSsCalaveras Co. 0.10 0.08 0.04 1.2 0.09 0.8
Ehrenfest 0.24 0.20 0.08 1.3 0.16 1.8

BrH2
c (One Parametrization)

TFSsadiabatic 6.9× 10-4 3.5× 10-3 0.14 2.4 0.38 0.8
Ehrenfest 6.1× 10-4 3.7× 10-3 0.00 6.7 0.85 1.0

MXH d (Three Parametrizations)
TFSsadiabatic 0.25 0.08 0.07 1.0 0.08 0.6
TFSsdiabatic 0.21 0.11 0.07 0.8 0.14 0.7
TFSsCalaveras Co. 0.26 0.07 0.08 0.9 0.08 0.6
Ehrenfest 0.20 0.12 0.16 1.6 0.21 1.0
CSS 0.09 0.11 0.10 0.9 0.22 0.6

a From refs 9, 42, 47.b From refs 21, 22.c From refs 16, 74.d From
ref 27. e Bold numbers indicate the best method for the dynamical
quantity. Column headers are defined in section III.

Figure 2. Ehrenfest trajectory undergoing a quenching process as a
function of the distanceRM-HX between M and the center of mass of
HX. This trajectory was calculated at 1.1 eV from theV ) 0, j ) 0
initial state on parametrization SL of the MXH system. (a)F22. (b)
The Jacobi angleø, which is the angle between the M-HX vector and
the HX vector. (c) The HX bond lengthrHX. (d) The potential energy.
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semble that for either possible electronic state of M+ HX. As
a corollary, the Ehrenfest method is more sensitive than other
methods to the scheme used to assign final quantum states. For
example, for NaH2 with the LSS algorithm, the results could
have contributions from trajectories whose energies are adjusted
by over 2 eV.

An illustration of the final-state assignment problem for the
Ehrenfest method is shown in Figure 3a, where we have plotted
the final average vibrational quantum number for the diatomic
fragments resulting from the unimolecular decay of an initially
excited NaH2 exciplex in parametrization 6. Notice that the
results of using histogramming to assign the product vibrational
quantum numbers and using LSS to do the assigning are very
different.

Figure 3b illustrates another problem with the Ehrenfest
method, which is that the final internal energies associated with
small-probability pathways will have large errors. This is
because the Ehrenfest potential energy surface will mainly
resemble the pure-state surface of the large-probability pathway.
In parametrization 6 of the NaH2 system the large-probability
pathway is the excited-state surface, which is characterized by
an attractive exciplex, and the small-probability pathway is the
ground-state surface, which is repulsive. Predictions of the
Ehrenfest method for the internal energy distribution for the
ground-state products in this system have a large error because
trajectories leave the interaction region under the influence of
the wrong physical forces. Table 1 illustrates this point further;
the Ehrenfest method typically has an error in the final
vibrational and rotational quantum numbers that is twice that
of the TFS methods.

Another related error is that the mixed character of the
potential energy often results in systematically low estimations
of the reaction probability for arrangements in which the excited-
state potential surface is energetically inaccessible. This occurs

when reaction is a small-probability event and the Ehrenfest
potential has a large contribution from an energetically closed
excited surface. This is illustrated in Table 2 for the cases
involving a chemical reaction. Notice that in every case the
reaction probability is below the accurate quantum estimation.
The TFS methods by contrast predict a reaction probability that
is too high on average, although there is not as systematic a
trend for the TFS methods as there is for the Ehrenfest method.

The TFS method also has undesirable characteristics. Figure
4 illustrates a trajectory calculated with the TFS method in the
Calaveras Co. representation for parametrization SL of the MXH
system. Note the location of the surface hop and the subsequent
change in the motion of the trajectory, illustrated in panels c
and d. One of the assumptions in the derivation of the fewest
switches trajectory surface-hopping algorithm is that trajectories
should follow paths that are independent of the surface being
used to propagate them; the change in character at the location
of the open circle clearly illustrates that this requirement is not
being satisfied in this case. The diamond illustrates a hop attempt

Figure 3. Final average final quantum numbers of H2 for the
unimolecular decay of NaH2 in parametrization 6 as functions of total
energy of the system. The asterisks represent the accurate quantum
mechanical results, the filled circles represent the Ehrenfest results with
final states assigned using the LSS method, and the open circles
represent the Ehrenfest results with final states assigned by histogram-
ming. (a) Final vibrational quantum number. (b) Final rotational
quantum number.

TABLE 2: Average Mean Signed Errors in the Reaction
Probabilities for the Ehrenfest, CSS, and TFS Calculations
in All Three Representations

TFS

system Ehrenfest CSS diabatic adiabatic
Calaveras

Co.

MHH 1 -0.20 - 0.08 -0.10 0.02
MHH 2 -0.28 - -0.06 -0.08 -0.08
MXH WL -0.20 -0.09 0.21 0.23 0.21
MXH SL -0.17 0.03 0.26 0.32 0.32
MXH SB -0.22 -0.02 0.13 0.20 0.20
BrH2 -6.2× 10-4 - - 5.6× 10-4

Average Over:
MXH systems -0.20 -0.03 0.20 0.25 0.24
all systems -0.15 -0.03 0.12 0.11 0.13

Figure 4. TFS trajectory in the Calaveras Co. representation (which,
in this case, is the adiabatic one) undergoing a quenching process. The
initial conditions of the trajectory are the same as for Figure 2. In these
panels, an open circle indicates the location of a surface hop, and an
open diamond indicates the location of a hop attempt that was frustrated
owing to insufficient momentum along thed vector. In each panel the
dashed line represents propagation in the excited state and the solid
line represents propagation on the ground state. (a)F22. (b) The Jacobi
angleø. (c) The HX bond length (rHX). (d) The potential energy.
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that was frustrated owing to insufficient momentum along the
d vector. Panel a illustrates the sharp change in the evolution
of F22 resulting from reversing the momentum component that
lies alongd. The effect of this momentum reversal can also be
seen by the sharp change in the HX vibrational motion in panel
c and in the potential energy in panel d. Although we have never
seen evidence of a systematic difference in final average
dynamical quantities between reversing the momentum com-
ponent alongd in the case of a momentum-prohibited hop or
not carrying out such a reversal, the sharp change in the
evolution of F22 resulting from this procedure suggests that
allowing the momentum to remain unchanged may be a more
physical alternative, although it does not follow from the model
mentioned in section II.A.

Figure 5 illustrates a reactive TFS trajectory in the Calaveras
Co. representation as a function of time. Panel a illustrates the
evolution of the bond lengths with time. The interaction period
occurs between about 600 and 850 fs and is shown in more
detail in panel b. It can be seen in panel b that three successful
surface hops occur. In each case there is a corresponding change
in F22. Figure 5 also illustrates the stochastic nature of surface-
hopping, namely, that not every large change inF22 causes a
hop to occur. Panel b illustrates an energetically frustrated hop
at 692 fs. At this time there is a rapid increase inF22, but there
is insufficient energy for a hop to occur as shown in panel c.

The most serious difficulty with the TFS method is the issue
of representation. The adiabatic and the diabatic representations
will have different forms of interstate coupling, and thus hopping
between surfaces is likely to occur at different places and at
different times. This is illustrated in Figure 6, where the lifetime
of the NaH2 excited-state complex with parametrization 6 is
plotted versus total energy. In the diabatic representation surface
hops occur more frequently,26 and once trajectories hop to the
lower repulsive surface, they rapidly dissociate before they can

hop back to the upper surface. This results in a prediction of
shorter lifetimes than calculations in the adiabatic representation
predict.

The worst-case examples for both TFS and the Ehrenfest
method come from our calculations on the NaH2 system. In the
trivial case of degenerate states, both the Ehrenfest method and
the TFS methods give identical vibrational-rotational distribu-
tions and reaction probabilities and all of the error in the
calculation results from the classical treatment of the particles.
It is thus large-gap systems in which the treatment of nonadia-
batic effects becomes most important. NaH2 is the largest gap
system we have examined; for example, the potential energy
gap for surface-hopping trajectories for parametrization 6 is often
larger than 1 eV.26 Thus the failures of each method are clearly
illustrated by this system. Organic photochemistry often involves
even larger gaps, e.g., then f π* excitation energy of acetone
is 4.5 eV, and it is important to have accurate methods for the
large-gap regime.

IV.B. What Goes Right?Figure 7 illustrates a CSS trajectory
undergoing a quenching process. Panel a illustrates the values
of F22 and w22 as functions of the M-HX center-of-mass
distance. Note thatw22 closely tracksF22 until the RM-HX

distance reaches 4.0 bohr, at which pointw22 gradually goes to
zero. This is further illustrated in panel d, where now the
discretization ofw22 allows the minimum energy in the vibration
of HX to go to zero.

Table 1 shows that the CSS method has average errors in
the six dynamical quantities that are smaller than the Ehrenfest
method for the MXH systems. Table 2 shows that the CSS
method corrects the tendency of the Ehrenfest method to give
reaction probabilities that are too low. Thus it appears that
forcing SCP trajectories to end in a quantized electronic state
improves the observed dynamics.

It may appear from Table 1 as though the TFS results in the
Calaveras County representation are not systematically better
than the TFS results in either the adiabatic or the diabatic
representation. However, for certain cases that we have exam-
ined the Calaveras County representation correctly describes
the trends of dynamical quantities as a function of total energy
whereas other representations do not (see, for example, ref 26
where the Calaveras County representation is equal to the
adiabatic representation for NaH2 parametrization 6, and it is
equal to the diabatic representation for NaH2 parametrization
5F). Figure 8 illustrates the reaction and quenching probability
for two different initial states for parametrization 1 of the MHH

Figure 5. Reactive TFS trajectory in the Calaveras Co. representation
(which, in this case, is the adiabatic one) for the initial conditions
described in Figure 2. (a) The three bond lengths as a function of time.
(b) The thin line representsF22, and the thick line represents the weight
w22 of the excited-state surface. The thick vertical lines represent surface
hops. (c) The potential energy of the ground- and excited-state adiabatic
potential energy surfaces. The vertical dashed line represents the
location of an energetically frustrated surface-hop attempt.

Figure 6. Lifetime of the NaH2 exciplex calculated on NaH2
parametrization 6. The open triangles represent the TFS results in the
adiabatic representation, the open squares represent the TFS results in
the diabatic representation, and the stars represent the quantum
mechanical results.
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system as a function of total energy. Clearly, the Calaveras
County representation selects the best of either the adiabatic or
diabatic representation. Note also that in this case the most
accurate representation depends on the initial state. When the
initial rotational quantum number is zero, the diabatic repre-
sentation is most accurate, and when the initial rotational
quantum number is two, the adiabatic representation is most
accurate. The Calaveras County representation successfully
predicts this trend.

The quenching probability for the NaH2 systems is the one
quantity for which the Calaveras County representation does
not appear to be as good as the diabatic representation as seen
in Table 1. The largest contribution to this error is from the

quenching probability for the unimolecular decay of NaH2 in
parametrization 6. In this case, the Calaveras County representa-
tion is the adiabatic representation, and 7 of the 10 energies
that we studied were threshold energies that occurred above
the classical asymptotic energy but below the asymptotic zero-
point energy.26 If we neglect these threshold energies in the
calculation of the error, the error is reduced to 0.08 for all three
TFS methods, and it is increased to 0.99 for the Ehrenfest
method (the Ehrenfest method predicts less quenching because
unlike the TFS methods, which must quench at energies below
the classical asymptotic energy, Ehrenfest trajectories can always
end up on a mixed surface and at low energies this surface
closely resembles the excited-state surface). When one considers
that in general semiclassical methods will have difficulty in
threshold regions and in regions where zero-point energy
conservation is important, the inaccuracy of the Calaveras
County representation in this single case does not seem too
severe.

In some cases, for instance, the MXH system and param-
etrization 2 of the MHH system, the TFS results do not depend
significantly on representation, and of course the Calaveras
County representation is as good as either of the other two
representations.

We may gain insight into the robustness of a method by
considering how many times it has the smallest error or an error
that is very close to the smallest error (say within 20%) for all
of the methods we consider, and how many times it has an error
that is at least twice as large as the best method. Two of the
systems that we have studied are characterized by three final
dynamical quantities, and the remaining six systems are
characterized by six dynamical quantities. This gives 42 cases
for which we can compare methods. The number of cases for
which each method is within 20% of the best and the number
of times for which it has an error at least twice as large as the
best are illustrated in Table 3. Table 3 shows that the TFS
methods are very robust; that is, when they are not the best
they still do not often have relatively large errors. This is in
contrast to the Ehrenfest method, which although sometimes
being the best, in many cases has an error relatively larger than

Figure 7. CSS trajectory undergoing a quenching process for the initial
conditions described in Figure 2. (a) The solid line representsF22, and
the dashed line representsw22. (b) The Jacobi angleø. (c) The HX
bond length (rHX). (d) The potential energy.

Figure 8. Reaction and quenching probability for parametrization 1
of the MH2 system with H2 initially in the V ) 0 vibrational state. The
open triangles represent the TFS results in the adiabatic representation,
the open squares represent the TFS results in the diabatic representation,
the stars represent the quantum mechanical results, and the solid line
represents the TFS results in the Calaveras County representation. (a)
The quenching probability for H2 initially in the j ) 0 rotational state.
(b) The quenching probability for H2 initially in the j ) 2 rotational
state. (c) The reaction probability for H2 initially in the j ) 0 rotational
state. (d) The reaction probability for H2 initially in the j ) 2 rotational
state.

TABLE 3: (Column I) Number of Cases (Defined in Section
III) for Which Each Method Was within 20% of the Best
Method for Each System and (Column II) Number of Cases
for Which Each Method Had an Error Twice as Large as
the Best Method for Each System

I II

NaH2
a (2 Parametrizations, 6 Cases)

TFSsadiabatic 5 2
TFSsdiabatic 5 2
TFSsCalaveras County 6 3
Ehrenfest 2 6

MHHb (2 Parametrizations, 12 Cases)
TFSsadiabatic 6 2
TFSsdiabatic 8 0
TFSsCalaveras County 9 0
Ehrenfest 4 7

BrH2
c (1 Parametrization, 6 Cases)

TFSsadiabatic 5 1
Ehrenfest 4 2

MXH d (3 Parametrizations, 18 Cases)
TFSsadiabatic 12 2
TFSsdiabatic 11 4
TFSsCalaveras County 11 2
Ehrenfest 5 9
CSS 6 2

a From refs 9, 42, 47.b From refs 21, 22.c From refs 16, 74.d From
ref 27.
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the best method. Table 3 also shows that the CSS method is
more robust than the Ehrenfest method. As mentioned in the
original CSS paper27 and above, large-gap systems will provide
the most difficult tests for the CSS method, but also the best
opportunity to demonstrate superiority. In these cases, the mixed-
final-state problem of the Ehrenfest method will be more even
more severe than for the examples given in section IV.A, and
the CSS method should be even better by comparison.

V. Concluding Remarks

When only the overall, average errors are considered, there
does not appear to be a method that systematically outperforms
the others. However, when one examines dynamical quantities
in greater detail the situation changes. The CSS method, for
example, by removing the mixed-final-state aspect of the
Ehrenfest method results in significantly reduced errors in the
final internal energy (as characterized by the vibrational and
rotational quantum numbers) and removes the systematically
low probability of reaction of the Ehrenfest method. We expect
these effects to be more significant for systems with larger
energy gaps.

We also note that the TFS methods are very robust; for
example, even when they are not the best method they still have
relatively low errors. Furthermore, one of the largest drawbacks
of the TFS methods, that of basis set dependence, may be
somewhat alleviated by choosing the Calaveras County repre-
sentation for surface hopping. When the results of calculations
in the adiabatic and diabatic representations do not differ
significantly, the Calaveras County representation is of course
as good as either of the other systematic choices of representa-
tion. However, when the results do depend on representation,
the Calaveras County representation tends to choose the most
accurate representation, even when this optimum representation
is a function of the initial state.
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